BASAVESHWAR ENGINEERING COLLEGE(AUTONOMOUS), BAGALKOT DEPARTMENT OF INDUSTRIAL AND PRODUCTION ENGINEERING

COURSEPLAN

Title of Course	:	Elements of Electrical Engineering	Course Code	:	22UEE115C
Credits	:	03	Contact Hours/ Week	:	03
Total Hours	:	40	Tutorial Hours	:	00
CIE Marks	:	50	SEE Marks	:	50
Semester	:	1	Year	:	2023-24

Course Objectives:

After completion of the course, students should be able to

- Identify various components of Hydel, Thermal and Nuclear power plants and explain the overall operation of the power plants
- Use the basics of magnetic circuits, electromagnetism, single phase & three phase circuits and apply them to analyse given electrical circuit.
- Use mesh current analysis and node voltage analysis to find the current and voltages of a given electric circuit.
- Calculate different parameters related to magnetic circuits, single phase & three phase AC circuits and energy consumption.

Course Outcomes:

At the end of the course the student will be able to:

- Identify various components of Hydel, Thermal and Nuclear power plants
- Apply the basics of magnetic circuits, electromagnetism, single phase & three phase circuits to analyse given electrical circuit.
- Use mesh current analysis and node voltage analysis to find the current and voltages of a given electric circuit.
- Calculate different parameters related to magnetic circuits, single phase & three phase AC circuits and energy consumption.

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

sı.	Programme Outcomes Course Outcomes	P01	P02	PO3	P04	PO5	90d	P07	PO8	P09	P010	P011	P012
	Identify various components of Hydel, Thermal and Nuclear power plants	3	-	-	-	-	-	-	-	-	-	1	-
	Apply the basics of magnetic circuits, electromagnetism, single phase & three phase circuits to analyse given electrical circuit.	3	2	-	-	-	-	-	-	I	-	I	-
	Use mesh current analysis and node voltage analysis to find the current and voltages of a given electric circuit.		2	-	1	-	-	-	-	-	-	-	-
	Calculate different parameters related to magnetic circuits, single phase & three phase AC circuits and energy consumption.		3	-	1	-	-	-	-	-	-	-	-

Competencies Addressed in the course and Corresponding Performance Indicators

PO		Competency		Performance Indicators
1	1.1	Demonstrate an ability to describe and derive the basics of magnetic circuits, electromagnetism, DC & AC circuits, electrical earthing	1.1.1	Apply mathematical techniques such as calculus, linear algebra, trigonometry, geometry to describe and derive the expressions / process / principle
	1.2	Demonstrate competence in electrical engineering fundamentals	1.2.1	Apply fundamental & electrical engineering concepts to solve engineering problems
2	2.1	Demonstrate an ability to formulate a solution plan and methodology for an	2.1.1	Reframe complex problems into interconnected sub-problems
		engineering problem	2.1.2	Compare and contrast alternative solution processes to select the best process
4	4.1	Demonstrate an ability to analyze data and reach a valid conclusion	4.1.1	Represent data (in tabular and/or graphical forms) so as to facilitate analysis and explanation of the data, and drawing of conclusions

Programme Outcome: Any of 1 to 12 PO's:

PO1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

SI.	Unit Learning Outcome (ULO)	CO's	BLL	PI addressed
	Unit -II			
1.	Students shall be able to explain electrical power generation by	2	2	2.1.2
	conventional methods; Hydel, Thermal and Nuclear			
2.	Students shall be able to list the factors to be considered for site	1	1	1.2.1
	selection of power plants			
3.	Students shall be able to define basic terms associated with	1	1	1.1.1
	electromagnetism			
4.	Students shall be able to differentiate between series and parallel	2	2	2.1.2
	magnetic circuits			
5.	Students shall be able to assess the ampere turns requirements for	2	2	1.1.1
	a given magnetic circuit of composite materials			
6.	Students shall be able to state and illustrate the laws of	2	2	1.1.1
	electromagnetic induction			
7.	Students shall be able to derive the expression for statically,	2	2	1.1.1
	dynamically induced emf's and coefficient of mutual coupling			
	Unit -II			
8.	Students shall be able to apply Ohms law to electrical circuit for	3	3	1.1.1

Unit Learning Outcomes (ULO):

	determining the circuit parameters			
9.	Students shall be able to apply KVL and KCL to electrical circuit for	3	3	1.1.1
	determining the circuit parameters	•		
10.	Students shall be able to analyse series, parallel and series-parallel	2	2	2.1.2
	circuits			
11.	Students shall be able to simplify circuit using source transformation	3	3	2.2.2
	and shifting			
12.	Students shall be able to find out the circuit parameters using mesh	3	3	2.1.2
4.9	current analysis, node voltage analysis.			
13.	Students shall be able to solve numerical problems associated with	5	4	1.2.1, 2.1.1
	DC circuits Unit -III			
		-	4	
14.	Students shall be able to define basic terms associated with AC sinusoidal waveform	1	1	1.1.1
15.	Students shall be able to explain the generation of AC voltages	2	2	1.1.1
16.	Students shall be able to describe operator "j" and its properties	2	2	1.1.1
17.	Students shall be able to derive the Voltage and Current	3	3	1.1.1
	relationship in R, L and C			
18.	Students shall be able to derive expression for Instantaneous and	3	3	1.1.1
	Average power in the series and parallel circuits with different combinations of R, L and C			
19.	Students shall be able to list advantages of three phase system over	1	1	2.1.2
	single phase systems			
20.	Students shall be able to explain the generation of three phase AC voltages	2	2	1.1.1
21.	Students shall be able to derive relationship between phase and line components in star and delta connected systems	3	3	2.1.2
22.	Students shall be able to derive expression for measuring power and power factor using two wattmeter's for three phase systems	3	3	1.1.1
	Unit -IV			
23.	Students shall be able to list and explain different types of	2	2	1.1.1
	electrical wiring,			
24.	Students shall be able to explain Two way and three way control	4	3	1.1.1
	of switch.			
25.	Students shall be able to identify and read Power rating of	1	4	2.1.2
	household appliances			
26.	Students shall be able to calculate electricity bill for domestic	2	2	1.1.1
	consumers			
27.	Students shall be able to understand Electric shock, effect of shock	1	1	2.1.2
	on body, factors affecting severity of shock, safety precautions.			

Course Content:

Hours	Topic to be covered	Mode of Delivery
Required		
01	Electrical Power Generation: Hydel plant- working principle, site selection parameters, merits and demerits.	Power point presentation with Chalk and talk
01	Thermal plant- working principle, site selection parameters, merits and demerits.	Power point presentation with Chalk and talk
01	Nuclear plant- working principle, site selection parameters, merits and demerits.	Power point presentation with Chalk and talk
01	ELECTROMAGNETISM: Properties of magnetic materials	Chalk and talk
01	Series and parallel magnetic circuits, Comparison between magnetic and electric circuits.	Chalk and talk
01	Faradays law of electromagnetic induction	Chalk and talk
01	Statically and dynamically induced emf	Chalk and talk
01	Self induced emf and mutually induced emf	Chalk and talk
01	Co-efficient of coupling	Chalk and talk
01	Problems on electromagnetism	Chalk and talk
01	DC Circuits: Ohm's law and Kirchhoff's laws,	Chalk and talk
01	Problems on KCL & KVL	Chalk and talk
01	Analysis of series, parallel and series- parallel circuits	Chalk and talk
01	Problems on series & parallel circuits,	Chalk and talk
01	Current and voltage sources, source transformation and shifting	Chalk and talk
01	Problems on source transformation and shifting	Chalk and talk
01	Dependent and independent sources, mesh current analysis	Chalk and talk
01	Problems on mesh current analysis	Chalk and talk
01	Node voltage analysis.	Chalk and talk
01	Problems on Node voltage analysis	Chalk and talk
01	Single-PhaseACCircuits:Generation of sinusoidal voltage	Chalk and talk
01	Average and rms values, form factor and peak factor	Chalk and talk
01	Phasor representation of alternating quantities	Chalk and talk
01	Analysis of R, L, C circuits with phasor diagrams	Chalk and talk

01	R-L, R-C, R-L-C circuits with phasor diagrams	Chalk and talk
01	Series, parallel and series-parallel circuits.	Chalk and talk
01	Problems on single phase circuits circuits	Chalk and talk
01	Three-Phase AC Circuits: Advantage of 3-phase system, generation of 3-phase power, Relationship between line and phase values of balanced star and delta connections	Chalk and talk
01	Power in balanced 3-phase circuits, measurement of 3-phase power by 2- wattmeter method.	Chalk and talk
01	Problems on 3 phase circuits	Chalk and talk
01	Domestic Wiring: Requirements, Types of wiring,	Power point presentation with Chalk and talk
01	Two way and three way control of switch	Power point presentation with Chalk and talk
01	Electrical Energy Calculation: Power rating of household appliances	Power point presentation with Chalk and talk
01	Two-part electricity tariff	Power point presentation with Chalk and talk
01	Problems on tariff	Power point presentation with Chalk and talk
01	Electricity bill for domestic consumers.	Power point presentation with Chalk and talk
01	Problems on billing	Power point presentation with Chalk and talk
01	Electrical Safety Measures: Equipment: Types of equipment,.	Power point presentation with Chalk and talk
01	Voltage and current issues, safety	Power point presentation with Chalk and talk
01	Human: Electric shock, effect of shock on body,	Power point presentation with Chalk and talk
01	Factors affecting severity of shock, safety precautions	Power point presentation with Chalk and talk

Review Questions:

SI.	Review Questions	ULO	BLL	PI addressed
1	Find the current in 2V source shown in Fig. 1	7	03	1.2.1
	$\frac{2n}{1n}$ $\frac{1n}{2n}$ $\frac{1n}{2n}$ $\frac{1}{4v}$ $\frac{1}{4v}$ Fig. 1			
2	A ring has a diameter of 21 cm and a cross-sectional area of 10 cm2 shown in Fig.1.0. The ring is made up of semicircular sections of cast iron and cast steel, with each joint having a reluctance equal to an air- gap of 0.2 mm. Find the ampere-turns required to produce a flux of 8X10-4 Wb. The relative permeabilities of cast steel and cast iron are 800 and 166 respectively. Neglect fringing and leakage effects $\int_{0.2 \text{ mm}} \int_{0.2 $	7	03	2.1.1
3	An iron ring has a X-section of 3 cm2 and a mean diameter of 25 cm. An air-gap of 0.4 mm has been cut across the section of the ring. The ring is wound with a coil of 200 turns through which a current of 2 A is passed. If the total magnetic flux is 0.24 mWb, find the relative permeability of iron, assuming no magnetic leakage	7	03	1.2.1
4	Find the impedance of a series RLC circuit if the inductive reactance, capacitive reactance and resistance are 184 Ω , 144 Ω and 30 Ω respectively. Also calculate the phase angle between voltage and current	16	03	1.2.1
5	A 400 mH coil of negligible resistance is connected to an AC circuit in which an effective current of 6 mA is flowing. Find out the voltage across the coil if the frequency is 1000 Hz	16	03	1.2.1
6	Each of the two wattmeters connected to measure the input to a 3 phase circuit reads 10 kW on a balanced load, when the power factor is unity. What does each instrument read when the power falls to 0.886 lag, the total 3 phase power remaining unchanged	24	03	
7	Describe the necessity of earthing with an equivalent circuit. Further, explain the different types of earthing	25	03	1.2.1

8	Define Magnetic flux, magnetic flux density, Reluctance, absolute permeability & relative permeability with their units and abbreviations	1	01	1.1.1			
9	Define and describe Krichoff's voltage and current laws with an 6 01 1.1.1 example						
10	The circuit shown in Fig.3b shows a hollow cube of 12 wires, each having a resistance of r. Find the resistance between any two diagonally opposite corners.	7	04	4.1.1			
	Fig. 3b						
11	Show that current lags the voltage by 90 degrees and the power consumed in a pure inductance circuit is zero	12	04	1.1.1			
12	Explain the principle of dynamically induced EMF and derive the expression for induced voltage 'e'	5	02	1.1.1			
13	 A coil of 1000 turns is wound on a silicon steel ring having relative permeability of 1200. The ring has a mean diameter of 10 cm and cross sectional area of 12 sq.cm. When a current of 4 A flows through the coil, find the following. Flux in the core Inductance of the coil EMF induced in the coil if the flux falls to zero in 15 mS Mutual inductance if another similar coil is placed such that 70% magnetic coupling exists between the coils 	7	04	2.1.1			

Evaluation Scheme:

Assessment	Marks	Weightage
CIE-I	20	20
CIE-II	20	20
Assignments/ Quizzes	10	10
SEE	100	50
Total	150	100

Faculty Signature :

(8

(Sunita. S. Tambakad)

Decuik

Head of the Department Electrical and Electronics Engg. BEC, Bagalkot-587102

BASAVESHWAR ENGINEERING COLLEGE(AUTONOMOUS), BAGALKOT <u>MODEL COURSE PLAN</u>

Title of Course	:	Introduction to Electrical Engineering	Course Code	:	22UEE116E
Credits	:	03	Contact Hours/ Week	•••	03
Total Hours	:	40	Tutorial Hours	•••	00
CIE Marks	:	50	SEE Marks	:	50
Semester	:	1 st and 2 nd	Year	:	2023-24

Prerequisites:Knowledge of Physics and Mathematics in Secondary Education.

Course Objectives:

	The Course objectives are:
1	To explain the laws used in the analysis of DC and AC circuits.
2	To explain the behaviour of circuit elements in single-phase circuits.
3	To explain the construction and operation of transformers, DC generators and motors.
4	To introduce concepts of circuit protecting devices and earthing.
5	To explain electric power generation, transmission and distribution, electricity billing, equipment and personal safety measures

Course Outcomes:

	At the end of the course the student should be able to:
1	Recall basics of DC Circuits, single phase and three phase circuits and electrical earthing.
2	Illustrate the laws of DC circuit, concept of single phase and three phase AC circuits domestic wiring practices and electricity generation principles, construction working principles applications of electrical machines and transformers.
3	Apply circuit laws and concepts to calculate different parameters of DC circuits, single phase and three phase AC circuits.
4	Evaluate the emf induced in generators and transformers under given conditions and asses energy consumption in domestic load.

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

		PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	Programme Outcomes															
No	Course Outcomes															
The	students will be able to:															
1	22UEE116E.1	З	1	1			1	1	1		1		1	2	2	2
2	22UEE116E.2	3	1	1	1		1	1	1		1		1	3	2	3
3	22UEE116E.3	З	2	3	1								1	2	2	2
4	22UEE116E.4	3	3	3	2								1	3	2	3

SI.	Unit Learning Outcome (ULO)	CO's	BLL	PI addressed
1.	Unit -I Students shall be able to asses typical layout of power system network	01	02	1.3.1
<u>1.</u> 2.	Students shall be able to explain electrical power system network conventional methods; Hydel, Thermal and Nuclear	01	02	1.4.1
3.	Students shall be able to analyse series, parallel and series-parallel circuits	01	03	2.2.3
4.	Students shall be able to apply Ohms law to electrical circuit for determining the circuit parameters	01	04	2.2.3
5.	Students shall be able to apply KVL and KCL to electrical circuit for determining the circuit parameters	01	04	2.2.3
6.	Students shall be able to find out the circuit parameters using mesh current analysis, node voltage analysis.	01	01	1.3.1
7.	Students shall be able to solve numerical problems associated with DC circuits	01	03	2.2.3
	Unit -II			
8.	Students shall be able to define basic terms associated with AC sinusoidal waveform	02	01	1.3.1
9.	Students shall be able to explain the generation of AC voltages	02	02	2.1.1
10.	Students shall be able to derive the Voltage and Current relationship in R, L and C	02	03	2.2.3
11.	Students shall be able to derive expression for Instantaneous and Average power in the series and parallel circuits with different combinations of R, L and C	02	03	2.2.3
12.	Students shall be able to list advantages of three phase system over single phase systems	02	01	1.3.1
13.	Students shall be able to explain the generation of three phase AC voltages	02	02	2.1.1
14.	Students shall be able to derive relationship between phase and line components in star and delta connected systems	02	03	2.2.3
	Unit -III			T
15.	Students shall be able to understand the construction and working of DC generator	03	01	1.3.1
16.	Students shall be able to list the different types of DC generators	03	01	1.3.1
17.	Students shall be able to list the application of DC generators	03	01	1.3.1
18.	Students shall be able to understand the construction and working of DC motors	03	01	1.3.1
19.	Students shall be able to list the different types of DC motors	03	01	1.3.1
20.	Students shall be able to list the application of DC motors	03	01	1.3.1
21.	Students shall be able to understand the construction and working of Transformers	03	01	1.3.1
22.	Students shall be able to list the different types of transformers	03	01	1.3.1
23.	Students shall be able to list the application of transformers	03	01	1.3.1
	Unit -IV			
24.	Students shall be able to list and calculate types of tariff in electricity	04	01	1.3.1
25.	Students shall be able to list and explain different types of electrical wiring,	04	01	1.3.1
26.	Students shall be able to explain Two way and three way control of switch.	04	02	2.1.1
27.	Students shall be able to identify and read Power rating of household appliances	04	01	1.3.1

28.	Students shall be able to calculate electricity bill for domestic consumers	04	04	2.2.3
29	Students shall be able to understand Electric shock, effect of shock on body, factors affecting severity of shock, safety precautions.	04	01	1.3.1

Competencies Addressed in the course and Corresponding Performance Indicators

Programme Outcome: Any of 1 to 12 PO's:

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, andan engineering specializationforthesolutionofcomplexengineeringproblems.

	Competency	PI	Indicat
			ors
1.1	Demonstrate the competence in solving engi	1.1.1	Applyfundamentals of mathematics to solve problems
	neeringmathematicalproblems	1.1.2	Apply advancedmathematical techniquestomodellingand problemsolvinginelectricalengineering
1.2	Demonstrate the competence in basic sciences	1.2.1	Applylawsofnaturalsciencetoanengineering problem
1.3	Demonstrate competence in engineering fundamentals	1.3.1	Applyelements of electrical engineering principles and laws
1.4	DemonstratecompetenceinElectrical engineeringknowledge	1.4.1	Applydisciplinespecificlawsandprinciplestosolveanengineering problem

<u>PO2</u>	:Problem analysis: Identify, formulate, res	search	iterature, and analyse complex engineering problems reaching
subs	tantiated conclusions using first principles of	mathen	natics, natural sciences, and engineeringsciences.
	Competency	PI	Indicators
2.1	Demonstrateanabilitytoidentifyandcharact	2.1.1	Evaluate problem statements and I dentify objectives
	erizeanengineering problem	2.1.2	Identifyengineeringsystems, variables, and parameters to solve the problems
		2.1.3	Identify the mathematical, engineering and other relevant knowledgethatapplies toagivenproblem
2.2	Demonstrate an ability to formulate	2.2.1	Reframecomplex problems into interconnected sub-problems.
	asolution plan and methodology for	2.2.2	Identify, assemble and evaluate information and resources.
	anengineeringproblem	2.2.3	Identifyexistingprocesses/solutionmethodsforsolvingthe problem, including justified approximations and assumptions
		2.2.4	Compareandcontrastalternativesolution processestoselectthe bestprocess.
2.3	Demonstrateanabilitytoformulateandinter pret asystem/model	2.3.1	Combinescientificandengineeringprinciplestoformulatemodels (mathematicalorotherwise)ofasystemorprocessthatisappropriatei nterms ofapplicabilityandrequiredaccuracy.
		2.3.2	Identifyassumptions(mathematicalandphysical)necessaryto allowmodelling of asystematthelevelof accuracy required.
2.4	Demonstrate an ability to execute a solution, process and analyze results	2.4.1	Apply engineering mathematics and computations to solve (form & analyze) mathematical models.
		2.4.2	Produceandvalidateresultsthroughskilfuluseofcontemporary engineeringtoolsandmodels
		2.4.3	Identify sources of error in the solution process, and limitations of the solution.
		2.4.4	Extractdesired understanding and conclusions consistent with objectives and limitations of the analysis

<u>PO3: Design/Development of Solutions:</u> Design/development of solutions: Design solutions for complexengineering problems and design system components or processes that meet the specified needs withappropriateconsiderationforpublichealthandsafety,andcultural,societal,andenvironmentalconsiderations.

	Competency	PI	Indicators				
3.1	Demonstrateanabilitytodefineacomplexo	3.1.1	Recognize that good problem definition assists in the design process				
	pen-endedprobleminengineeringterms	3.1.2	Elicit and document engineering requirements from stakeholders				
		3.1.3	Synthesize engineering requirements from are view of the State of				
			the Art				
		3.1.4	Extract engineering requirements from relevant engineeringCodesandStandards				
		3.1.5	Explore and synthesize engineering requirements from larger social and professional concerns				
		3.1.6	Determined sign objectives, functional requirements and arrive at specifications				
3.2	Demonstrate an ability to generate a diverse set of alternative designs olutions	3.2.1	Apply formal idea generation tools to develop multiple engineering design solutions				
		3.2.2	Build models, prototypes, etc., to develop diverse set of design solutions				
		3.2.3	Identify the suitable criteria for evaluation of alternate design solutions				
3.3	Demonstrate an ability to select the optimal design scheme for further development	3.3.1	Apply for malmulti criteria decision making tools to select optimal engineering design solutions for further development				
		3.3.2	Consult with domain experts and stakeholders to select candidate engineering design solution for further development				
3.4	Demonstrateanabilitytoadvanceanengine	3.4.1	Refine a conceptual design in to a detailed design with in the				
	eringdesigntodefinedend state		existing constraints(of the resources)				
		3.4.2	Generates information through appropriate tests to				
			improve,orrevisedesignstates				

PO4:Conductinvestigationsofcomplexproblems:Useresearch-

based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthes is of the information to provide valid conclusions.

	Competency	PI	Indicators
4.1	1 Demonstrateanabilitytoconductinvestig 4. ationsoftechnicalissuesconsistentwithth 4. eirlevelofknowledgeandunderstanding 4.		Definea problem for purpose of investigation, its scope and importance
			Relate modern engineering experimentation including experiment design, system calibration, data acquisition, analysis and presentation
		4.1.3	Apply appropriate instrumentation, and/or software tools to make measurements of physical quantities
	4.1.4		Establishorvalidatearelationshipbetween measureddataand under lying physical principles.
4.2	1.2 Demonstrateanabilitytodesignexperime 4 ntstosolveopenendedproblems		Develop and design experimental approach, specify appropriate equipment and procedures, implement these procedures, and interpret there sulting data to characterize an engineering material, component, or system.
		4.2.2	Understand the importance of statistical design of experiments and choose an appropriate experimental design plan base don't he study objectives
4.3	Demonstrate an ability to	4.3.1	Use appropriate procedures, tools and techniques to collect and analyze data
	criticallyanalyzedatatoreachavalidconcl usion	4.3.2	Critically analyze data for trends and correlations, stating possible errors and limitations
			Represent data (in tabular and/or graphical forms) so as to facilitate analysis and explanation of the data, and draw conclusions
		4.3.4	Synthesize information and knowledge about the problem from the raw data to reach appropriate conclusions

PO5:Moderntoolusage:Create,select,andapplyappropriatetechniques,resources,andmodernengineering and IT tools including prediction and modelling to complex engineering activities with anunderstandingofthelimitations.

	Competency	PI	Indicators
5.1	5.1Demonstrateanabilitytoidentify/createm odernengineeringtools, andresources5.15.1		Identifymodernengineeringtools, techniques and resources for engineering activities
			Create/adapt/modify/extendtoolsandtechniquestosolve problems
5.2	5.2 Demonstrate an ability to select andapplydisciplinespecifictools,technique s andresources 5.2.1 5.2 Demonstrate an ability to select and applydisciplinespecifictools,technique s and resources 5.2.1		Identify the strengths and imitations of tools for(i)acquiring information,(ii)modellingandsimulation,(iii)monitoringsystemperformance, and(iv)creating engineering designs.
			Demonstrate proficiency in using computing, mathematical, circuitsimulation,anddocumentpresentation/preparationsoftware.(MATLAB /Scilab,PSPICE,SABER,PROTEUSsoftwaretools, AutoCAD,projectmanagementtools,Latexandothers)
5.3	5.3Demonstrateanabilitytoevaluatethesuitab5ilityandlimitationsofthetools5usedtosolveanengineering problem		Identifylimitations and validate tools, techniques and resources
			Verifythecredibility of results from tool use with reference to the accuracy and limitations, and the assumptions in herent in the iruse.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professionalengineeringpractice.

	Competency	PI	Indicators
6.1	Demonstrate the ability to describe engineering roles in a broader context, e.g. as pertains to the environment, health, safety, and public welfare	6.1.1	Identify and describe various engineering roles;particularlypertainingtoprotectionofthepublicand publicinterest
6.1	Demonstrate an understanding of professionalengineeringregulations,legislationandsta ndards	-	Interpretlegislation, regulations, codes, and standards relevant to elect rical and electronics engineering discipline (such as IEEE) and explain itsc on tribution to the protection of the public

<u>PO7: Environment and sustainability:</u>Understand the impact of the professional engineering solutions insocietalandenvironmentalcontexts,anddemonstratetheknowledgeof,andneedforsustainabledevelopment.

	Competency	PI	Indicators
7.1	impactofengineeringandindustrialpracticeonsocial		Identifyrisks/impactsinthelife-cycleofanengineering productoractivity
		7.1.2	Demonstrateanunderstandingoftherelationshipbetweenthe technical, socio-economic and environmental dimensionsofsustainability
7.2	7.2 Demonstrateanabilitytoapplyprinciplesofsustaina bledesignanddevelopment		Describe management techniques for sustainable development
			Applyprinciplesofpreventiveengineeringandsustainable development to an engineering activity or product relevanttoElectricalandElectronicsEngineering

-	<u>PO8:Ethics:</u> Applyethicalprinciplesandcommittoprofessionalethics, responsibilities and norms of the engineering practice.				
	Competency	PI	Indicators		
8.1	Demonstrateanabilitytorecognizeethical dilemmas	8.1.1	Identifysituations of unethical professional conduct and proposee thical alternatives		
8.2	Demonstrate an ability to applytheCode of Ethics		Identifytenets of the IEEE professional code of ethics Examine and applymoral & ethical principles to historically famous cases tudies		

sett	ings.		
	Competency	PI	Indicators
9.1	Demonstrate an ability to formate a mand define a rol efore a chimember	9.1.1	Recognizeavarietyofworkingandlearningpreferences; appreciatethevalueof diversityinateam
		9.1.2	Implement thenorms of practice (e.g. rules, roles, charters, agendas, etc.) of effective teamwork, to accomplish agoal.
9.2	Demonstrateeffectiveindividual&teamoperations communication, problem solving,resolution&leadershipskills	9.2.1	Demonstrate effective communication, problems of violation of the problem of the
9.3	Demonstratesuccessinateam-basedproject	9.3.1	Presentresultsasateam, with smooth integration of contributions from all individual efforts

PO10:Communication:Communicateeffectivelyoncomplexengineeringactivities with the engineering community and with the society at la rge, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions

	Competency	PI	Indicators
10.1	.1 Demonstrateanabilitytocomprehendtechnical literature and documentprojectwork.		Read, understand and interprette chnical and non-technical information
		10.1.2	Produce clear, well-constructed, and well-supported writtenengineeringdocuments
		10.1.3	Create <i>flow</i> inadocumentorpresentation-alogical progressionofideassothatthemainpointisclear
10.2	Demonstrate competence in listening,speaking,	10.2.1	Listentoand comprehend information, instructions, and view point of others
	andpresentation	10.2.2	Delivereffective or alpresentation stotechnical and non- technical audiences
10.3	Demonstrate the ability to integratedifferentmodesofcom		Createengineering-standardfigures, reports and drawings to complement writing and presentations
	munication	10.3.2	Useavarietyofmediaeffectivelyto conveyamessageina documentorapresentation

PO11:Projectmanagementandfinance: Demonstrateknowledgeandunderstandingoftheengineeringandmanagement principles and apply these to one's own work, as a member and leader in a team, to manageprojects and inmultidisciplinary environments. Competency ΡΙ Indicators 11.1 Demonstrateanabilitytoevaluatetheeconomic Describevariouseconomicandfinancialcosts/benefitsof 11.1.1 and financial performance of anengineeringactivity anengineeringactivity 11.1.2 Analyzedifferentformsoffinancialstatementstoevaluate thefinancialstatusofanengineering project DemonstrateandabilitytoCompareandcontrastt Analyzeandselectthemostappropriateproposalbasedoneconomican 11.2 11.2.2 dfinancialconsiderations. hecosts/benefitsofalternate proposalsforanengineeringactivity 11.3 Demonstrateanability to 11.3.1 Identifythetasksrequiredtocompleteanengineering Activity, and the resources required to complete the tasks. plan/manageanengineeringactivitywithintimea ndbudgetconstraints 11.3.2 Useprojectmanagementtoolsto scheduleanengineering Projectsoastocompleteontimeandwithinbudget.

PO12:Life-longlearning: Recognise the need for and have the preparation and ability to engage in independent and life-

	Competency	PI	Indicators
12.1	Demonstrate an ability to identify gaps inknowledgeandastrategytoclosethesegaps	12.1.1	Describe the rationale behind the requirement for continuingprofessionaldevelopment
		12.1.2	Identify deficiencies or gaps in knowledge anddemonstrateanabilitytosourceinformationtobridge the same
12.2	Demonstrate an ability to Identify changingtrendsinengineeringknowledgeandprac tice	12.2.1	Identifyhistoricpointsoftechnologicaladvanceinengineeringthatreq uirepractitionerstoseekeducationin ordertostayupdated
		12.2.2	Recognize theneed andbe ableto clearlyexplainwhyitisvitallyimportanttokeepupdatedregardingnew developmentsinthefield
12.3	Demonstrateanabilitytoidentifyandaccess sourcesfor newinformation	12.3.1	Demonstrate anability to source and comprehend technical literature and other credibles ources of information
		12.3.2	Demonstrate an ability to critically analyze sourced technicaland popular information forfeasibility, viabilityandsustainability

PO1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Hours	Topic to be covered	Mode of Delivery					
Required							
01	General Structure of electrical Power System using single line diagram approach						
01	Hydel Power Plant, Thermal Power Plant (Block Diagram Approach)						
01	Nuclear Power Plant (Block Diagram Approach)	Chalk and talk in					
01	OHM's Law and its limitations, KVL and KCL	classroom/Lecture					
01	Problems on OHMS law	combined with					
01	Problems on KVL, KCL	discussions					
01	Definitions on Series, Series-Parallel circuits						
01	Problems on Series Circuits						
01	Problems on Series- Parallel circuits						
01	Problems on Series- Parallel circuits						
01	Definitions on Equation on AC Voltage, Current, waveform, time period, frequency,						
	amplitude, phase, phase difference,						
01	Average value, RMS value, Form factor, peak factor (Only Definitions)						
01	Voltage and Current relationship with phasors diagrams in R, L, and C Circuits	Chalk and talk in					
01	Voltage and Current relationship with phasors diagrams in R, L, and C Circuits	classroom/Lecture combined with					
01	Concept on impedance analysis of R-L, R-C and R-L-C series circuits						
01	Active power, Reactive power and apparent power and concept on power factor	discussions					
01	Simple numerical						
01	Generation of three phase AC quantity, Advantages and Dis-Advantages and						
	limitations						
01	Star and delta connections						
01	Relationship between line and phase quantities (excluding proof)						
01	Working principal of DC Generator, construction equations,						
01	Types and classifications, specifications	Chalk and talk in					
	01 Applications, cost and simple numerical problems						
01	Working principal of DC Motor, construction equations,	classroom/Lecture					
01	Types and classifications, specifications	discussions					
01	01 Applications, cost and simple numerical problems						

Course Content:

01	Working principal of Transformer, construction equations,	
01	Types and classifications, specifications	
01	Applications, cost and simple numerical problems	
01	simple numerical problems	
01	Requirements, Types of wiring,	
01	Two way and three way control of loads	
01	Power rating of household appliances, two-part electricity tariff	Chalk and talk in
01	Calculation of electricity bill for domestic consumers.	classroom/Lecture
01	Calculation of electricity bill for domestic consumers.	combined with
01	Types of equipment for safety, voltage and current issues	discussions
01	Electric shock on humans,	
01	Effect of shocks on body,	
01	Factors affecting severity of shocks	
01	Safety precautions	

Review Questions:

Review Questions	со	BLL	PI addressed
State ohm's law and its limitations.			1.3.1
With the help of single line diagram explain the power transmission and distribution network.	1	1	1.3.1
State Kirchhoff's Current law.	1	1	1.3.1
State Kirchhoff's Voltage law.	1	1	1.3.1
Write down the expression of equivalent resistance for 'n' – number of resistors in series connection.	1	1	1.3.1
Write down the expression of equivalent resistance for 'n'- number of resistors in parallel connection	1	1	1.3.1
A resistance R is connected in series with a parallel circuit comprising two resistances of 12 Ω and 8 Ω respectively. The total power dissipated in the circuit is 70 W when the applied voltage is 20V. Calculate R.	1	4	2.2.3
Two batteries of 24V and 20V with internal resistances of 0.4Ω and 0.25Ω respectively are connected in parallel across a load of 4Ω . Calculate (i) the current supplied by each battery and (ii) voltage across the load.	1	4	2.2.3
A resistance R is connected in series with a parallel circuit comprising of resistances of 4Ω and 6Ω respectively. When the applied voltage is 15V, the power dissipated in 4Ω resistor is 36W, calculate R.	1	4	2.2.3
With block diagram explain hydel power generation.	1	2	1.4.1
With block diagram explain nuclear power generation.	1	2	1.4.1
With block diagram explain thermal power generation.	1	2	1.4.1
Define the following by referring a sine wave i) RMS value ii) average value iii) form factor iv) peak factor v) phase and vi) phase difference.	2	1	1.3.1
Show that the current through purely capacitive circuit leads the applied voltage by 90° and average power consumed is zero. Draw the wave shapes of current, voltage and power.	2	3	2.1.1
An inductive coil takes a current of 10A from a supply of 100V, 50Hz and lags the voltage by 30 ^o . Calculate i) parameters of the circuit ii) power factor iii) active, reactive and apparent power.	2	3	2.1.1
With the help of circuit diagram and phasor diagram, find the phase angle, impedance and power in case of R-L series circuit.	2	1	1.3.1
Define Impedance	2	1	1.3.1
With a neat diagram explain the construction of D.C. generator	2	2	2.1.1

Derive an expression of armature torque developed in a D. C. motor	3	3	2.1.3
An 8 pole generator has 500 armature conductors and has a useful flux per pole of 0.065wb.		4	2.2.3
What will be the emf generated if it is lap connected and runs at 1000rpm? What must be the			
speed at which it is to be driven to produce the same emf if it is wave wound?			
Derive the emf equation of a transformer and hence obtain the voltage and current		3	2.1.3
transformation ratios.			
Explain the various losses in a transformer and how to minimize them?	3	2	2.1.1
With usual notations derive an emf equation of D.C. generator.	3	3	2.1.3
Define power factor.	3	1	1.3.1
Define real power, reactive power and apparent power.	3	1	1.3.1
With neat circuit diagram and switching table explain two way and three way control of load	4	2	2.1.1
Define "unit" used for consumption of electrical energy and explain the two part tariff with its	4	1	1.3.1
advantages and disadvantages			
What is electric shock? Give the list of preventive measures against the shock.	4	1	1.3.1
List out the power rating of household appliances including air conditioners, PCs, laptops,	4	1	1.3.1
printers, etc. Find the total power consumed.			
Define fuse? Explain the working of fuse with neat diagram.		1	1.3.1
Define electric shock? What are the safety precaution to be taken against to avoid electric shock.	4	1	1.3.1
Define unit and tariff? Explain the two part tariff with its merits and de-merits.	4	2	1.3.1

Evaluation Scheme:

Assessment	Marks	Weightage
CIE-I	20	20
CIE-II	20	20
Assignments/ Quizzes/ Case Study/ Course Project/ Term Paper/Field Work	10	10
SEE	100	50
Total	150	100

Details of Assignment:

Assignment	Marks (10)	СО	PI	СА	PO
Assignment 1	Case study	1,2,3,4	1.3.1,1.4.1, 2.1.1,2.1.3,	1.3,1.4,2.1, 2.2,	01,02,03,04,12
	(05M)		2.2.3,	2.4	
Assignment 2	Quiz (05M)	1,2,3,4	1.3.1, 1.4.1	1.3,1.4	01,02,03,04,12

Ju

Prof. S. G. Nayak

Decuik

Head of the Department Electrical and Electronics Engg. BEC, Bagalkot-587102

BASAVESHWAR ENGINEERING COLLEGE (AUTONOMOUS), BAGALKOT

Model CoursePlan

Title of Course	:	Renewable Energy Sources	Course Code	:	22UEE136B
Credits	:	3	Contact Hours/ Week	:	3
Total Hours	:	40	Tutorial Hours	:	40
CIE Marks	:	50	SEE Marks	:	100
Semester	:	I	Year	:	2023

Prerequisites:

Course Objectives:

	The Course objectives are:
1	To identify the parameters required for solar, wind, biomass, geothermal and ocean energy conversion systems.
2	To apply and analyze concepts and theory related to solar, wind, biomass, geothermal and ocean energy conversion systems
3	To derive power output of solar and wind energy conversion systems based on the corresponding solar irradiation and wind speed respectively
4	To analyze pros and cons of solar, wind, biomass, geothermal and ocean energy conversion systems

Course Outcomes:

	At the end of the course the student should be able to:
1	Identify electrical and mechanical devices of solar, wind, biomass, geothermal and ocean energy conversion systems.
2	Illustrate performance parameters related to solar, wind, biomass, geothermal and ocean energy conversion systems.
3	Compute the power generation of wind and solar energy correspond to variable data.
4	Compare the features of solar, wind, biomass, geothermal and ocean energy conversion systems.

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Programme Outcomes (PO) and Programme Specific Outcomes (PSO)

		PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO1	PSO2	PSO3
No	Programme Outcomes Course Outcomes															
The	students will be able to:															
1	22UEE136B.1	3	1	1			1	1	1		1	1	1	3	1	
2	22UEE136B.2	3	1	1	1		1	1	1		1		1	2	3	
3	22UEE136B.3	3	2	3	1							1	1	1	1	
4	22UEE136B.4	3	3	3	2				1				1	1		1

Competencies Addressed in the course and Corresponding Performance Indicators

P0	Competency	Indicators			
1	Knowledge of Conventional and Non- conventional Energy Resources	 Understand the principles of Conventional and Non- conventional Energy Resources Explain the characteristics of Conventional and Non- conventional Energy Resources. Describe the solar spectrum, wind velocity, biomass and how it affects the performance. 			
2	Working principle and importance of solar, wind biomass, geothermal and ocean energy sources	 Identify different PV module technologies, wind turbine types and their advantages/disadvantages. Understand the function and selection of PV module technologies, wind turbine. 			
7	Applications of solar, wind biomass, geothermal and ocean energy sources	 Calculate the power output from PV and wind energy system based on input sources. Determine the appropriate battery bank size (if off-grid). 			
12	Compare and contrast the renewable energy sources	 Differentiate between available renewable energy sources. 			

Programme Outcome: Any of 1 to 12 PO's:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PI SI. Unit Learning Outcome (ULO) CO's BLL addressed Unit -I1 Students should be able to define basic terms associated with 1. 1 1 1.1.1 conventional and non-conventional energy sources. Students should be able to differentiate between conventional and 2.1.2 2. 2 2 non-conventional energy sources. Students should be able to assess the scenario of renewable energy 3. 2 2 1.1.1 sources in global and India. Students should be able to state and illustrate the solar radiation 2 4. 2 1.1.1 data in terrestrial and extra-terrestrial region. Unit -II 5. Students shall be able to define basic terms associated with 1 1.1.1 1 SPVthermal devices and module-Ratings, standard parameters 2 Students should be able to describe applications of SPV 2 1.1.1 6.

Unit Learning Outcomes (ULO):

	Unit -III			
7.	Students should be able to describe the working principle and	2	2	1.1.1
	derivation of the power from WECS			
8.	Students should be able to compare the various classification of	2	2	1.1.1
	WECS			
9.	Students should be able to describe the working principle of	2	2	2.1.2
	Biomass conversion technologies			
10.	Students should be able to compare the various classification of	3	3	3.1.2
	Biomass conversion technologies			
	Unit -IV			
11.	Students should be able to describe the working principle of	2	2	1.1.1
	geothermal conversion conversion technologies			
12.	Students should be able to describe the working principle of Tidal	1	4	2.1.2
	Power Plant			
13.	Students should be able to describe the working principle of OTEC	2	2	1.1.1
	system			

Course Content:

Hours	Topic to be covered	Mode of Delivery					
Required							
01	Introduction to Energy Sources:	Chalk and talk in					
	Classification of energy resources	classroom/Lecture combined					
01	conventional energy resources – availability and their limitations;	with discussions/Lecture with a quiz/ Tutorial/					
01	non-conventional energy resources – classification, advantages, limitations	Assignments/ Demonstration/ Invited					
01	comparison of conventional and non-conventional energy resources.	lectures/ Group Assignment/					
01	Solar Energy Basics:Introduction,						
01	Solar constant						
01	basic sun-earth angles – definitions						
01	solar radiation geometry						
01	solar radiation data measuring instruments –						
	Pyranometer and Pyrheliometer.						
01	Summary of solar energy basics						
01	Solar thermal systems, Principle of conversion of solar radiation into heat						
01	solar water heaters						
01	solar cookers – box type, concentrating dish type						
01	solar driers, solar still.						
01	Solar thermal electric power generation						
01	solar pond and concentrating solar collector						
	(parabolic trough, parabolic dish, central tower collector)						
01	Advantages and disadvantages of solar thermal system						
01	solar photovoltaic – solar cell fundamentals,						

01	module, panel and array;	
01	solar PV systems – street lighting, domestic	
	lighting and solar water pumping systems.	
01	Wires–Introduction	
01	Basicsofcurrentconduction, types of wires	
01	Wind Energy:	
	Wind and its properties	
01	History of wind energy, basic principles of Wind	
	Energy Conversion Systems (WECS),	
01	Savinous and Darrius types	
01	Advantages and limitations of WECS.	
01	Biomass Energy:	
	Introduction, photosynthesis process	
01	biomass conversion technologies	
01	biomass gasification – principle	
01	working of gasifiers	
01	factors affecting biogas generation, types of biogas	
	plants–KVIC and Janata model.	
01	Geothermal Energy:	
	Introduction, classification, conversion	
	technologies	
01	applications, advantages and limitations of	
	geothermal resources.	
01	Energy from Ocean:	
	Principle of tidal power, components of Tidal	
	Power Plant (TPP)	
01	classification, advantages and limitations of TPP.	
01	Ocean Thermal Energy Conversion (OTEC):	
	Principle of OTEC system	
01	Types of OTEC power generation	
01	Block diagram, applications	
01	Advantages and limitations of OTEC	
01	Summary of Renewable Energy Sources	

Review Questions:

Review Questions	ULO	BLL	PI addressed
List the various classification of Energy Sources	1	4	1.1.1
Write the total installed capacity of following renewable energy	2	2	2.1.2
sources in India and global as on 2022.			
(i) Wind Turbine Generator (ii) Solar PV			
With neat diagram and characteristics, define the following	3	2	1.1.1
radiation geometry: latitude, declination, hour angle, solar			
azimuth angle.			
Under which of the following condition a typical silicon PV cell	4	2	1.1.1
produces about 0.5 – 0.6 volt DC?			
Modified FPC and Compound Parabolic Concentrating (CPC)	5	3	1.1.1
belongs to which of the following type of solar collectors?			
A solar PV panel installed at Bagalkot generates 6 kWh of energy per	6	3	1.2.1, 2.1.1
hour. Calculate the energy generated by the same solar panel on 12 th			
September 2019. (Coordinates for Bagalkot are 16.1691° N, 75.6615°			
E)			
List the classification of various types of solar collectors.	6	1	1.1.1
Compare and contrast the box and paraboloidal dish type solar	6	1	2.1.2
cooker.			
How hot spot effect on solar cells and solution with neat	5	1	1.1.1
diagram.			
Functions of solar incident on green plants and photosynthetic	7	1	1.1.1
organisms are,			
Derive the expression of power in the vertical axis wind turbine	8	1	1.1.1
generator.			
Explain the two stage process of photosynthesis	10	2	1.1.1
Explain the biomass conversion technologies: Incineration and	9	4	2.1.2
Pyrolysis.			
Write the difference between hydrothermal and hot dry rocks	11,12	2	1.1.1
of energy sources.			
Illustrate, the bulges at near and far side of earth and what is	13	2	1.1.1
the one tidal cycle.			

Evaluation Scheme:

Assessment	Marks	Weightage
CIE-I	20	20
CIE-II	20	20
Assignments/ Quizzes/	10	10
Case Study/ Course Project/		
Term Paper/Field Work		
SEE	100	50
Total	150	100

Details of Assignment:

Assignment	Marks (10)	СО	PI	СА	РО
Assignment 1	5	3,4	1.2.1, 2.1.1	1.1, 2.1	1,2
Assignment 2	5	3,4	2.1.2, 4.1.1	2.1, 4.1	2, 4

Faculty Incharge:

Dr. Sangamesh Goudappanavar

Deeuik

Head of the Department Electrical and Electronics Engg. BEC, Bagalkot-587102